

O3 OLYMPISCHES DORF

DINA4 Architektur

1 | MISCHBAU HOLZ UND MINERALISCHE BAUSTOFFE AM BEISPIEL O3

AUSZUG PROJEKTE IN MISCHBAUWEISE

O3 Olympisches Dorf

Kundl I

Justizzentrum Korneuburg

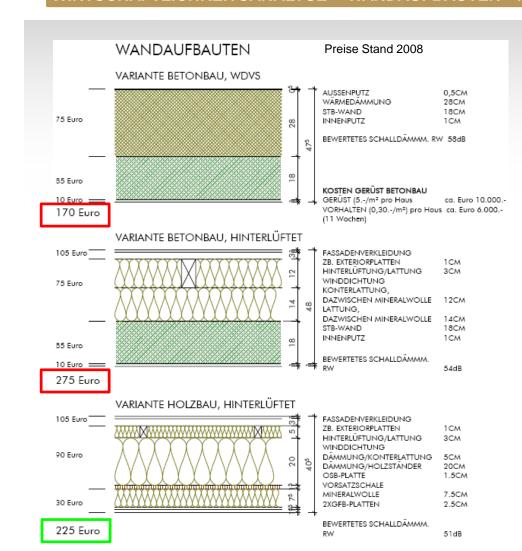
DER WEG ZUM MISCHBAUPROJEKT

ENTSCHEIDUNGSGRUNDLAGEN

- HOHER VORFERTIGUNGSGRAD und damit verbundene GERINGE BAUZEIT
 - Entscheidung Wettbewerb Februar 2009
 - Einreichung Mai 2009
 - Ausführungspläne und Ausschreibung Oktober 2009
 - Baubeginn Dezember 2009
 - Fertigstellung und Abnahme durch das IOC November 2011
- IDEALE GEBÄUDEABMESSUNGEN: ca. 20x20 m
 - die größten eingesetzten vorgefertigten Fassadenteile haben eine Länge von ca. 20 m und eine Höhe von 2,95 m, ca. 10.000m² Fassadenfläche wurde verbaut
- **GEOMETRIE** Mischbauweise eignet sich nicht für jedes Gebäude, **O3 bot ideale Voraussetzungen** durch:
 - ◆ die Geometrie
 ◆ viele gleiche Elemente
 ◆ einfaches statisches System im Betonbau bis ins UG

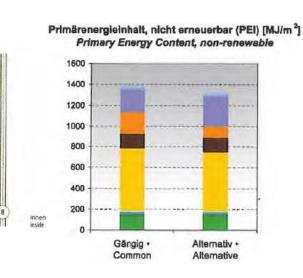
DER WEG ZUM MISCHBAUPROJEKT

ENTSCHEIDUNGSGRUNDLAGEN


- HERAUSFORDERUNG einen acht geschossigen Baukörper mit "brennbaren Materialien" in den Hauptkonstruktionen zu planen und zu errichten
- ÖKOLOGISCHER + ÖKONOMISCHER ASPEKT (FLÄCHENEINSPARUNG)
- WIRTSCHAFTLICHKEITSANALYSE überzeugte den Bauherrn, Kostenblätter Wandaufbauten und technische Konzeption wurde in Kooperation mit Universität Innsbruck Hrn. Prof. Flach erarbeitet
- GRUNDIDEE FERTIGBAUELEMENTE Fertigbauelemente sollten mit Fenstern und Fassadenverkleidung fertiggestellt und montiert werden

WIRTSCHAFTLICHKEITSANALYSE - WANDAUFBAUTEN - KOSTENBLÄTTER

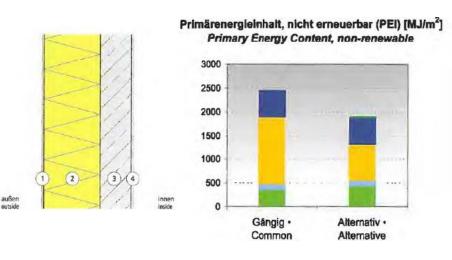
ÖKOLOGISCHES PROFIL



ÖKOLOGISCHES PROFIL – HERSTELLUNG

Quelle: Passivhaus-Bauteilkatalog, Ökologisch bewertete Konstruktionen Mitautor: Dr. DI Karl Torghele

2008, Springer-Verlag-Wien


HOLZ

HOLZBAU ca. 1400 MJ/m2 entspricht 389kWh/m2

außen

BETON

BETON ca. 2500 MJ/m2 entspricht 695kWh/m2

ENTSPRICHT EINEM FAST 2-FACHEM ENERGIEEINSATZ

INTEGRALE PLANUNG - SCHNITTSTELLENMANAGEMENT

INTEGRALE PLANUNG INVOLVIERT MASSGEBLICH ALLE AM BAUPROZESS BETEILIGTEN

Durch integrale Planung wird agieren und reagieren der einzelnen Planergruppen zu einem Zeitpunkt verlangt, zu dem Aufwendungen noch in Grenzen gehalten und auf Kosten Einfluss genommen werden kann. Eigen- und Fremdkontrolle in einem derartigen Planungsprozess ist ein wesentlicher Faktor. Das hinterfragen gewisser Detailpunkte und Detaillösungen wird wesentlich intensiver betrieben als in Prozessen die größtenteils parallel ablaufen. Fragen und entsprechende Lösungen ergeben sich im Zuge des Prozesses von selbst.

INTEGRALE PLANUNG - SCHNITTSTELLENMANAGEMENT

INTEGRALE PLANUNG INVOLVIERT MASSGEBLICH ALLE AM BAUPROZESS BETEILIGTEN

Die Planungsidee muss an alle beteiligten Firmen weitergegeben werden. Der **permanente Informationstransfer**, die Interaktionen zwischen verschiedenen Gewerken zur Erreichung der geforderten Funktionalität eines Systems, bedingen die Notwendigkeit, **Schnittstellen** zu koordinieren und zu gestalten.

Ohne die Kompetenz des Bauherrn als **koordinierende Stelle**, oder eines **Steuerungsorganes** oder einer **organisatorischen Schnittstelle** ist ein funktionierendes Prozessmanagement und somit integrale Planung sehr schwer realisierbar.

INTEGRALE PLANUNG

INTEGRALE PLANUNG AM BEISPIEL 03

Das Bauprojekt Lodenareal in Innsbruck wurde 2006 erfolgreich integral geplant und bot die Vorlage für das Objekt O3 Olympisches Dorf. Bei O3 fand vor allem in der Einreich- und Polierplanphase eine intensive Zusammenarbeit mit dem Institut HFA statt.

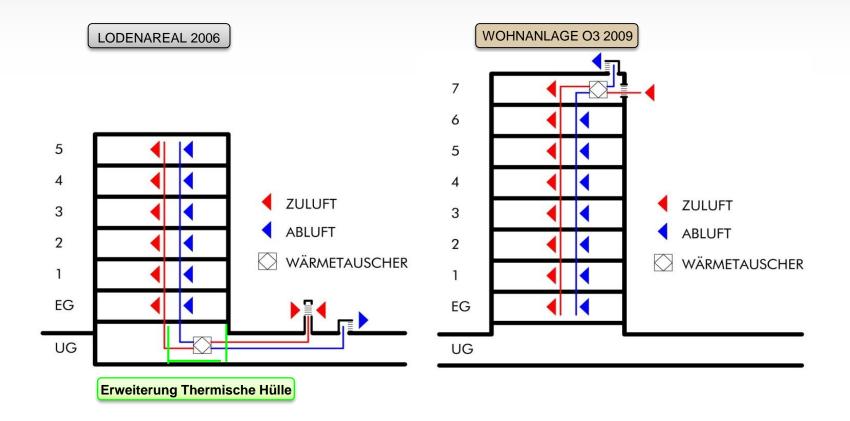
Durch den Vergleich und die Analyse des Lodenareals konnten Optimierungen der technischen Ausrüstungen und Ausführungsdetails aufgrund Erfahrungswerten, Testergebnissen und Lernkurven erzielt werden.

INTEGRALE PLANUNG

INTEGRALE PLANUNG AM BEISPIEL 03

DARAUS RESULTIERENDE OPTIMIERUNGEN:

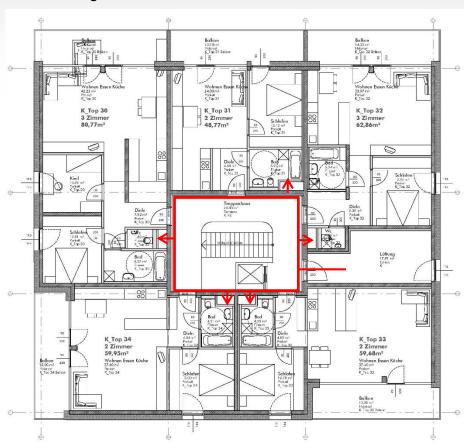
- Situierung der Lüftungsanlage im obersten Geschoß anstelle eines Zimmers, kurze Wege
- Optimale Luftverteilung Verteilung zentral im Kern
- Optimierte Grundrisse kaum Trockenbauverkleidungen für die Luftverteilung erforderlich
- Geänderte Fachmeinung, Luft muss nicht unbedingt bei Fenster eingeblasen werden, durch Bewegung im Raum und Thermik funktioniert die Luftverteilung genauso (ist heutzutage kein Diskussionsthema mehr, heute neue Ansätze mittels Kaskadenlüftung, man spricht vom Coandereffekt.



OPTIMIERUNG DURCH ERFAHRUNG

SITUIERUNG DER LÜFTUNGSZENTRALEN

im obersten Geschoß anstelle eines Zimmers, kurze Wege

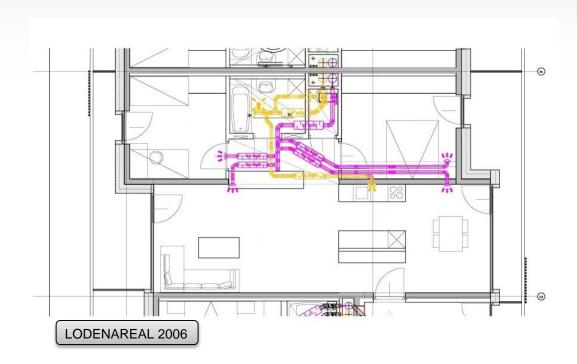


OPTIMIERUNG DURCH ERFAHRUNG

OPTIMALE GRUNDRISSSITUATION

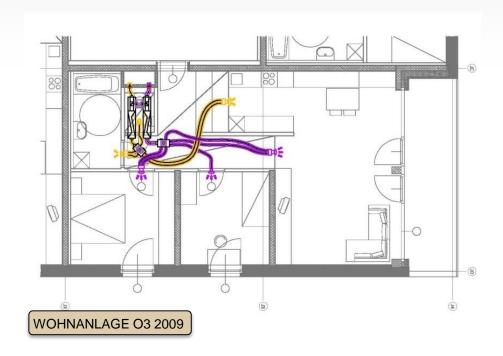
Verteilung zentral im Kern

WOHNANLAGE O3 2009



OPTIMIERUNG DURCH ERFAHRUNG

- OPTIMIERTE GRUNDRISSE
- GEÄNDERTE FACHMEINUNG



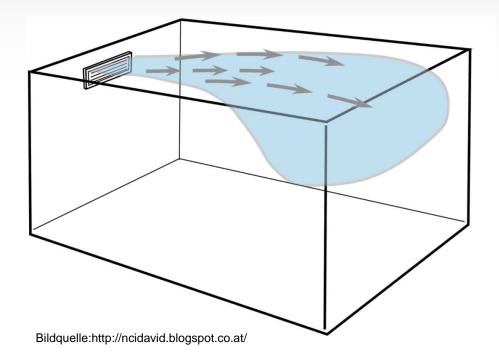
OPTIMIERUNG DURCH ERFAHRUNG

- OPTIMIERTE GRUNDRISSE
- GEÄNDERTE FACHMEINUNG

OPTIMIERUNG DURCH ERFAHRUNG

- OPTIMIERTE GRUNDRISSE
- GEÄNDERTE FACHMEINUNG

PROTOTYPENERSTELLUNG



OPTIMIERUNG DURCH ERFAHRUNG

GEÄNDERTE FACHMEINUNG

Coandereffekt

GENEHMIGUNGSPROZESS

INTENSIVER PLANUNGSPROZESS IM ZUGE DER GENEHMIGUNGSPLANUNG

Die Gebäude des Bauprojektes O3 sind It. OIB in der **Gebäudeklasse 5** eingestuft.

Im Zuge der Genehmigungsplanung wurde mit bereits **ausgearbeiteten Fassadenschnitten** und **technischen Beschreibungen** in enger Zusammenarbeit mit dem **Institut der Holzforschung Austria (HFA)** gearbeitet.

In der Kooperation mit dem **HFA** und dem **Fassadenplaner gbd** wurden sämtliche Fassadendetails erarbeitet, vom Institut begutachtet und bewertet und in einem Klassifizierungsbericht zusammen-gefasst, welcher als Basis für die baurechtliche Genehmigung herangezogen wurde.

GENEHMIGUNGSPROZESS

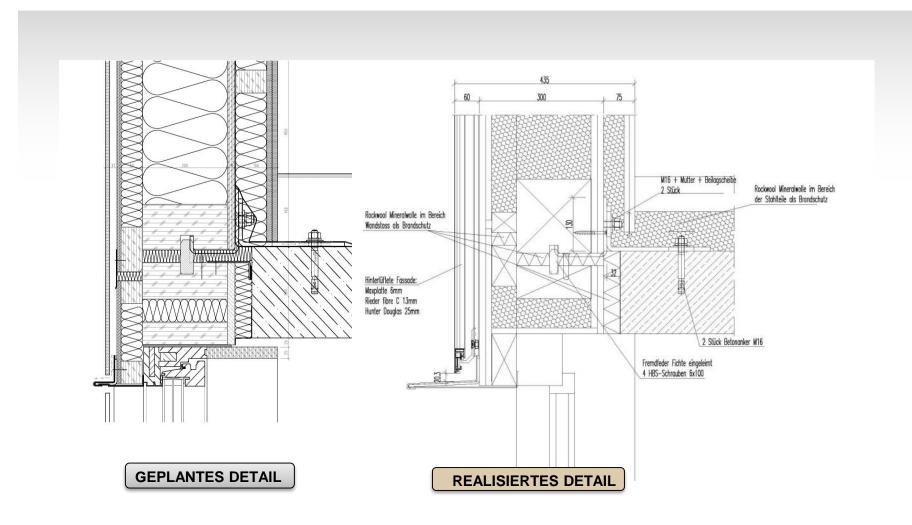
INTENSIVER PLANUNGSPROZESS IM ZUGE DER GENEHMIGUNGSPLANUNG

Verwendung getesteter Bauteile

Die Wandkonstruktion wurde auf Basis **bereits** in Brandversuchen **getesteten Bauteilen** entwickelt und aus diesen Versuchen abgeleitet, sodass **keine** eigens durchgeführten **Versuche notwendig** gewesen sind (massive Zeit- und Kosteneinsparungen in der Genehmigungsphase!!)

Die eingesetzte Konstruktion entspricht einem Feuerwiderstand von El90.

Gipsfaserplattenummantelung


Brennbare Materialien in der Konstruktion wurden mittels **Gipsfaserplatten ummantelt/gekapselt**. Dadurch wurde das **Kapselkriterium von K30** erreicht. Lt. Klassifizierungsbericht erzielte die Konstruktion den Wert von **K45** (Erfahrung der HFA, wurde nicht getestet)

DETAILENTWICKLUNG

DETAILENTWICKLUNG

WICHTIG KONSTRUKTIVER BRANDSCHUTZ

- Übereinanderliegende raumhohe Fenster vermeiden (Brandüberschlag)
- Massive auskragende Balkonplatten vor raumhohen Fenstern die den Brandüberschlag verhindern (Auskragung 2 m)
- Schutz der Montagewinkelkonstruktion durch die Vorsatzschale bzw. den Estrichaufbau
- Vorgehängte Fassade It. ÖNORM B 3806 (entsprechender Materialeinsatz)
- Nutzung der horizontalen Brandriegel als Gestaltungselement (bei jedem zweiten bis dritten Geschoß)

UMSETZUNG

Umsetzung

Umsetzung

Qualitätssicherung - Luftdichtheitsmessung Musterwohnung

Qualitätssicherung - Luftdichtheitsmessung Musterwohnung

Qualitätssicherung - Luftdichtheitsmessung Musterbox

KOSTENGEGENÜBERSTELLUNG MASSIVBAUWEISE versus

DAS BAUVORHABEN 03 IM 1:1 VERGLEICH

- ca. 16.400 m² NFL wurden konventionell in Massivbauweise errichtet
- ca. 13.200 m² NFL wurden in Mischbauweise erbaut
 Quelle: Daten basierend auf abgerechneten Kosten der NHT

BAUKOSTEN BEZOGEN AUF DIE BRUTTOGESCHOßFLÄCHE IN €/M²

	Baukosten	GFL m²	€/m²
Massivbau	€ 27.331.886	22.934	€1.191,76
Mischbau	€ 21.936.893	18.671	€1.174,92

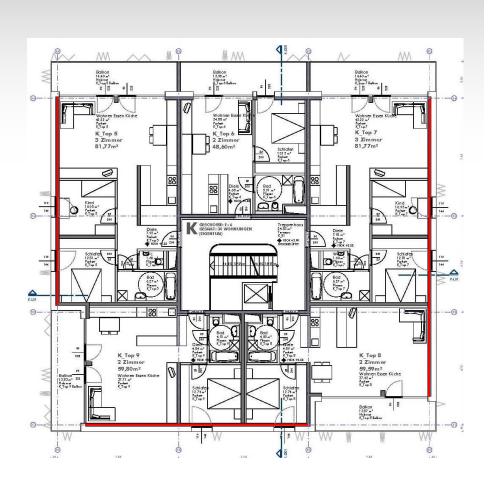
KOSTENGEGENÜBERSTELLUNG MASSIVBAUWEISE versus

VERGLEICH KOSTEN ROHBAU UND GEBÄUDEHÜLLE

	Massivbau	Mischbau		
Baumeister	€ 11.851.415	€ 7.973.831		
Fassade		€ 3.176.917		
Fenster	€ 2.502.374	€ 1.144.917		
Spengler	€ 513.604	€ 363.631		
Schlosser	€ 1.084.113	€ 1.018.751		
	€ 15.951.506	€ 13.678.047		
GFL m²	22.934	18.671		
€/m²	€ 695,54	€ 732,58		

BAUKOSTEN BEZOGEN AUF DIE TECHNIKKOSTEN IN €/M²

	Technikkosten	GFL m²	€/m²
Massivbau	€ 7.190.913	22.934	€ 313,55
Mischbau	€ 4.863.031	18.671	€ 260,46


GEGENÜBERSTELLUNG WANDSTÄRKE MASSIVBAUWEISE versus MISCHBAUWEISE

WANDSTÄRKEN IM VERGLEICH

Massivbau		Mischbau	
Putz	1	Vorsatzschale	7,5
Massivwand	20	Ständerwand	30
Vollwärmeschutz	30	Fassade	6
	51		43,5
Gesamtdämmstärke	30		29
U-Wert	0,11		0,15
Luftdichtheit	0,23		0,24

Durch die **7,5 cm geringere Wandstärke** konnten zusätzlich **123 m² Nutzfläche** generiert werden - das entspricht ca. der Fläche von **2 Wohnungen**

VORTEILE DER MISCHBAUWEISE & NACHTEILE DER MISCHBAUWEISE

VORTEILE

- Rasche Bauzeit
- Passgenaue Anschlüsse bei Einbauten wie Fenstern, saubere luftdichte Anschlüsse, wesentlich geringere Bautoleranzen als im Massivbau
- Intensivere Auseinandersetzung mit der Baukonstruktion und Details in der Planungsphase
- Geringer Wandaufbau
- Bei gleicher Kubatur kann mehr Nutzfläche generiert werden
- Ökologischer Materialeinsatz
- Zimmerer höhere Affinität mit dem Thema Passivhaus als z.B. Maurer
- bessere Wärmebrücken im Bereich der Sockelanschlüsse durch Übergang von Beton auf Holz
- Weniger Gewerke-Schnittstellen

NACHTEILE

- Gefahr von Feuchteeintrag während der Bauzeit, Schutz der Bauteile muss gewährleistet werden
- Aufwendige Absturzsicherungen während der Bauzeit
- intensivere baubegleitende
 Qualitätssicherung zur Erfüllung der
 Luftdichtheitsanforderungen notwendig
- Sockelausbildung zu Erdreich

O3 OLYMPISCHES DORF

